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Continual Learning Large Visual Models

• Two directions

Upgrade models with more natural data (images and texts)

Adapt models with new domain images, specifically (e.g., MRI)

Source: Segment anything in medical images | Nature Communications

Adapt to new domains with small data

Crawl more natural images for continual pre-training

Daily-life photos
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Continual Learning Large Visual Models

• Two directions

Upgrade models with more natural data (images and texts)

Adapt models with new domain images, specifically (e.g., SAR)
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Adapt to new domains with small data

Crawl more natural images for continual pre-training
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“Learning De-Biased Representations for 

Remote-Sensing Imagery”

Conference on Neural Information Processing Systems 2024 (NeurIPS’24)

Zichen Zhaozheng Qianru

Multi-spectrum SAROptical
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Conference on Neural Information Processing Systems 2024 (NeurIPS’24)
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Learning De-Biased Representations for Remote-Sensing Imagery, Tian et al., NeurIPS 2024

Presentation Outline

Background & Motivation

• Challenges in RS domain
• Limits of Existing Methods

• Motivation of using PEFT

Insights & Design

• Key Observations of PEFT

• Our Framework
• Core Components

Experimental Results

• Ablation Studies

• Hyperparameter Studies

• Multiple Adaptation Settings

• Multiple Tasks

Future 

Directions
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Background & Motivation
Challenges in RS domain • Current Solutions & Limits • Our Key Observations
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What is Remote Sensing, and why research in this field is crucial.

Remote Sensing Domain

• Definition

Remote sensing images are captured from an overhead 
perspective by spaceborne or airborne sensors, which present 
unique viewpoints compared to natural images.

Learning De-Biased Representations for Remote-Sensing Imagery, Tian et al., NeurIPS 2024
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What is Remote Sensing, and why research in this field is crucial.

Remote Sensing Domain

• Definition

Remote sensing images are captured from an overhead 
perspective by spaceborne or airborne sensors, which present 
unique viewpoints compared to natural images.

• Multiple Spectrums

o Optical RS (ORS): 400-700nm

o Multi-spectral RS (MSRS): 400-2500nm

o Synthetic Aperture Radar (SAR): 1mm-1m

Learning De-Biased Representations for Remote-Sensing Imagery, Tian et al., NeurIPS 2024
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What is Remote Sensing, and why research in this field is crucial.

Remote Sensing Domain

• Definition

Remote sensing images are captured from an overhead 
perspective by spaceborne or airborne sensors, which present 
unique viewpoints compared to natural images.

• Multiple Spectrums

o Optical RS (ORS): 400-700nm

o Multi-spectral RS (MSRS): 400-2500nm

o Synthetic Aperture Radar (SAR): 1mm-1m

• Key Applications

o Environmental monitoring

o Resource management

o Disaster response

Learning De-Biased Representations for Remote-Sensing Imagery, Tian et al., NeurIPS 2024
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Remote Sensing data are diverse and complex, requiring heavy processing costs.

Challenges in RS Data

• RS Data Diversity and Complexity

o Various data source & processing tech

Learning De-Biased Representations for Remote-Sensing Imagery, Tian et al., NeurIPS 2024

MSRS imagery

1mm-1m400-700nm 400-2500nm
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Remote Sensing data are diverse and complex, requiring heavy processing costs.

Challenges in RS Data

• RS Data Diversity and Complexity

o Various data source & processing tech

o Various spectrums

Learning De-Biased Representations for Remote-Sensing Imagery, Tian et al., NeurIPS 2024

MSRS imagery
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Remote Sensing data are diverse and complex, requiring heavy processing costs.

Challenges in RS Data

• RS Data Diversity and Complexity

o Various data source & processing tech

o Various spectrums

o Various downstream tasks

Learning De-Biased Representations for Remote-Sensing Imagery, Tian et al., NeurIPS 2024

MSRS imagery

1mm-1m400-700nm 400-2500nm
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Remote Sensing data are diverse and complex, requiring heavy processing costs.

Challenges in RS Data

Learning robust and generic representations is desirable!
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Why not training from scratch?

Parameter Efficient Transfer Learning

• Self-supervised Training from Scratch

o Data scarcity in certain spectrums (e.g., SAR imagery)

Learning De-Biased Representations for Remote-Sensing Imagery, Tian et al., NeurIPS 2024

Year Dataset Name Samples Polarization

2019 AIR-SARShip-1.0/2.0 31,300 -

2019 SEN12MS 180,662 Dual-pol

2019 PolSF 3,000 Full-pol

2019 SAR-Ship 43,819 -

2019 ShipDataset 39,729 HH,VV,VH,HV

2020 HRSID 5,604 HH,HV,VH,VV

2020 So2Sat LCZ42 400,673 Dual-pol

2020 FUSAR-Ship 5,000 -

2020 OpenSARUrban 33,358 Dual-pol

2020 MSAW 48,000 Quad-pol

2022 MSAR 30,158 HH,HV,VH,VV

2022 SADD 883 HH

2023 SAR-AIRcraft 18,888 Uni-polar

2023 OGSOD 18,331 VV/VH

2023 SIVED 1,044 VV/HH

2023 SARDet-100k 116,598 Multiple

TOTAL 977,047

Table: High-quality SAR data is scarce. Only open-sourced 

datasets released after 2018 are listed. The data acquisition mode 
(i.e., polarization) vary greatly among datasets.
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Why not training from scratch?

Parameter Efficient Transfer Learning

• Self-supervised Training from Scratch

o Data scarcity in certain spectrums (e.g., SAR imagery)

o Constraints in model scale and data scale

Learning De-Biased Representations for Remote-Sensing Imagery, Tian et al., NeurIPS 2024

Figure: Compare foundation models. The bubble figure shows model scale, 

data scale and training time of five representative foundation models. Bubble 
size indicates training GPU-hour. Models from RS domain are much smaller 

in both model and data scale compared to natural vision domain.
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Why not training from scratch?

Parameter Efficient Transfer Learning

• Self-supervised Training from Scratch

o Data scarcity in certain spectrums (e.g., SAR imagery)

o Constraints in model scale and data scale

o Constraints in training GPU time

Learning De-Biased Representations for Remote-Sensing Imagery, Tian et al., NeurIPS 2024

Figure: Compare foundation models. The bubble figure shows model scale, 

data scale and training time of five representative foundation models. 
Numbers near to bubbles are training GPU-hour. Models from RS domain 

uses less training GPU-hours compared with natural vision domain.
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Why not training from scratch?

Parameter Efficient Transfer Learning

We propose to transfer existing foundation models to RS domains.
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Why do we need parameter efficient?

Parameter Efficient Transfer Learning

• Transfer Learning Setups

o Adaptation from natural vision domain to RS domain

Learning De-Biased Representations for Remote-Sensing Imagery, Tian et al., NeurIPS 2024

Figure: Adaptation settings from natural vision domain to RS domain. 

We select two representative models in generative and contrastive arch (i.e., 

Stable Diffusion v1.5 and CLIP) as source model, and transfer to optical RS 

domain (i.e., target dataset DOTA v1).
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Why do we need parameter efficient? 

Parameter Efficient Transfer Learning

• Transfer Learning Setups

o Adaptation from natural vision domain to RS domain

o Adaptation between RS spectrums

Learning De-Biased Representations for Remote-Sensing Imagery, Tian et al., NeurIPS 2024

Figure: Adaptation settings between RS spectrums. 

We transfer knowledge from optical RS foundation model (i.e., SatMAE) to two 

data-scarce domains: SAR and MSRS imagery. 
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Why do we need parameter efficient? 

Parameter Efficient Transfer Learning

• Transfer Learning Setups

o Adaptation from natural vision domain to RS domain

o Adaptation between RS spectrums

• Zero-Shot and Fine-tuning

o Fine-tuning suffers from 1) catastrophic forgetting, 2) long training 
time, etc.

o Even zero-shot outperforms fine-tuning.

Learning De-Biased Representations for Remote-Sensing Imagery, Tian et al., NeurIPS 2024

Figure: Performance of SD to ORS adaptation. 

Representations evaluated by linear probing. “Scratch” means 
supervised learning from scratch.

By comparing zero-shot and fine-tuning, we could conclude 
that fine-tuning suffers from catastrophic forgetting issue.
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Why do we need parameter efficient?

Parameter Efficient Transfer Learning

• Transfer Learning Setups

o Adaptation from natural vision domain to RS domain

o Adaptation between RS spectrums

• Zero-Shot and Fine-tuning

o Fine-tuning suffers from 1) catastrophic forgetting, 2) long training 
time, etc.

o Even zero-shot outperforms fine-tuning.

• Parameter Efficient Transfer Learning (PEFT)

o LoRA[1] - Low Rank Adaptation

[1] Lora: Low-rank adaptation of large language models, Hu, Edward J., et al., ArXiv (2021)

Figure: Performance of Natural to ORS adaptation setting. 

LoRA achieves the best performance, especially on tail classes.
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• Rank – The linearly independent column numbers (or row numbers) in a matrix.



LoRA – Low Rank Adaptation

• Rank – The linearly independent column numbers (or row numbers) in a matrix.

• Low-Rank Matrix in Neural Network – For a given neural layer with params matrix 𝜽𝑛×𝑘, the rank of 
this matrix can be considered “the dimensions of representation space”. It is updated by an updating 
matrix ∆𝜽𝑛×𝑘:

𝜽𝑛×𝑘 + ∆𝜽𝑛×𝑘 ,



LoRA – Low Rank Adaptation

• Rank – The linearly independent column numbers (or row numbers) in a matrix.

• Low-Rank Matrix in Neural Network – For a given neural layer with params matrix 𝜽𝑛×𝑘, the rank of 
this matrix can be considered “the dimensions of representation space”. It is updated by an updating 
matrix ∆𝜽𝑛×𝑘:

𝜽𝑛×𝑘 + ∆𝜽𝑛×𝑘 ,

• Low-Rank Decomposition – Generally, this updating matrix ∆𝑾𝑛×𝑘 is sparse. Thus, instead of 
updating the whole 𝑛 × 𝑘 matrix, we could decompose ∆𝑾𝑛×𝑘 into two low-rank dense matrixes 𝑨 
and 𝑩:

∆𝑾𝑛×𝑘 = 𝑩𝑛×𝑟𝑨𝑟×𝑘
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LoRA – Low Rank Adaptation

• Rank – The linearly independent column numbers (or row numbers) in a matrix.

• Low-Rank Matrix in Neural Network – For a given neural layer with params matrix 𝜽𝑛×𝑘, the rank of 
this matrix can be considered “the dimensions of representation space”. It is updated by an updating 
matrix ∆𝜽𝑛×𝑘:

𝜽𝑛×𝑘 + ∆𝜽𝑛×𝑘 ,

• Low-Rank Decomposition – Generally, this updating matrix ∆𝑾𝑛×𝑘 is sparse. Thus, instead of 
updating the whole 𝑛 × 𝑘 matrix, we could decompose ∆𝑾𝑛×𝑘 into two low-rank dense matrixes 𝑨 
and 𝑩:

∆𝑾𝑛×𝑘 = 𝑩𝑛×𝑟𝑨𝑟×𝑘

Such sparse matrix ∆𝜽𝑛×𝑘 is called “a LoRA module”, and 𝑟 is its rank. Multiple LoRA modules could 
be weighted combined.
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Why do we need parameter efficient?

Parameter Efficient Transfer Learning

• Transfer Learning Setups

o Adaptation from natural vision domain to RS domain

o Adaptation between RS spectrums

• Zero-Shot and Fine-tuning

o Fine-tuning suffers from 1) catastrophic forgetting, 2) long training 
time, etc.

o Even zero-shot outperforms fine-tuning.

• Parameter Efficient Fine-Tuning (PEFT)

o LoRA - Low Rank Adaptation

o Both fine-tuning, zero-shot and PEFT suffers from long-tailed 
distribution issue.

Learning De-Biased Representations for Remote-Sensing Imagery, Tian et al., NeurIPS 2024

Figure: Performance of Natural to ORS adaptation setting. 

The debLoRA achieves highest performance, especially for tail 
class.
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Insights & Design
Key Observations •  Framework • Core Components • Algorithm Explanation
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We observe that representation space learnt by PEFT methods are biased.

Key Observation – Biased Representation Space

[2] We define feature space 𝑍 as biased if 𝑉𝑜𝑙(𝑍ℎ)  ≫  𝑉𝑜𝑙(𝑍𝑡), and ∃ 𝑧𝑡 ∈ 𝑍𝑡: 𝑃 𝑧𝑡 ∈ 𝑍ℎ > 𝑃(𝑧𝑡 ∈ 𝑍𝑡), where 𝑍ℎ and 𝑍𝑡  denotes the feature spaces of 
head and tail classes respectively, 𝑉𝑜𝑙(·) denotes feature space volume, and 𝑃(·) denotes the probability distribution predicted by the model.

• Biased Representation Space

o When learnt on long-tailed data, LoRA’s adapted 
feature space of LoRA is biased[2]. 

Figure: Feature distribution of training samples. For clearer visualization, 

we pick representative head class “Helicopter” and tail class “Ship” from 
DOTA v1 dataset as an example.
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We observe that representation space learnt by PEFT methods are biased.

Key Observation – Biased Representation Space

[2] We define feature space 𝑍 as biased if 𝑉𝑜𝑙(𝑍ℎ)  ≫  𝑉𝑜𝑙(𝑍𝑡), and ∃ 𝑧𝑡 ∈ 𝑍𝑡: 𝑃 𝑧𝑡 ∈ 𝑍ℎ > 𝑃(𝑧𝑡 ∈ 𝑍𝑡), where 𝑍ℎ and 𝑍𝑡  denotes the feature spaces of 
head and tail classes respectively, 𝑉𝑜𝑙(·) denotes feature space volume, and 𝑃(·) denotes the probability distribution predicted by the model.

• Biased Representation Space

o When learnt on long-tailed data, LoRA’s adapted 
feature space of LoRA is biased[2]. 

o Validation samples of head class are mostly 
correctly classified.

Figure: Feature distribution of training samples. For clearer visualization, 

we pick representative head class “Helicopter” and tail class “Ship” from 
DOTA v1 dataset as an example.
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We observe that representation space learnt by PEFT methods are biased.

Key Observation – Biased Representation Space

[2] We define feature space 𝑍 as biased if 𝑉𝑜𝑙(𝑍ℎ)  ≫  𝑉𝑜𝑙(𝑍𝑡), and ∃ 𝑧𝑡 ∈ 𝑍𝑡: 𝑃 𝑧𝑡 ∈ 𝑍ℎ > 𝑃(𝑧𝑡 ∈ 𝑍𝑡), where 𝑍ℎ and 𝑍𝑡  denotes the feature spaces of 
head and tail classes respectively, 𝑉𝑜𝑙(·) denotes feature space volume, and 𝑃(·) denotes the probability distribution predicted by the model.

• Biased Representation Space

o When learnt on long-tailed data, LoRA’s adapted 
feature space of LoRA is biased[2]. 

o Validation samples of head class are mostly 
correctly classified.

o Validation samples of tail class are wrongly 
classified as head class.

o Key Challenge: Train/Val distribution mismatch 
for tail classes.

Figure: Feature distribution of training samples. For clearer visualization, 

we pick representative head class “Helicopter” and tail class “Ship” from 
DOTA v1 dataset as an example.
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Our Framework involves three core components.

Framework of Our Approach

• Three key components

o Feature clustering – Unsupervised clustering to find less biased prototypes.

o Feature calibration – Use less-biased prototypes to calibrate tail class features.

o debLoRA learning – Learn a LoRA module to capture this de-bias mapping.

Learning De-Biased Representations for Remote-Sensing Imagery, Tian et al., NeurIPS 2024
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Learning De-Biased Representations for Remote-Sensing Imagery, Tian et al., NeurIPS 2024

We first found balanced prototypes within feature space.

Feature Clustering

• Feature clustering

o We conduct K-Means clustering over training samples’ 
feature space.

min
𝜇𝑘



𝑖=1

𝑁

min
k

𝑧𝑖 − 𝜇𝑘
2, 𝑠. 𝑡. ∀𝑘, 𝑛𝑘 ≥

𝑁

𝐾 ⋅ 𝜌
,

where 𝜇𝑘  and 𝑛𝑘  denote the center and size of the 𝑘-th 
cluster, respectively. 

o Some cluster centers are contributed by both head and 
tail classes, and hence is less biased (e.g., clusters 2 and 
3).
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• De-Biased Center

o We calculate de-biased representation center for 
each tail class:

Ƹ𝜇𝑐 = 

𝑘

𝑤𝑘 ⋅ 𝜇𝑘 , 𝑤𝑘 =
𝑛𝑘

𝑛𝑐
,

here weight 𝑤𝑘  proportion to the fraction of class 𝑐 
samples in 𝑘-th cluster.

Learning De-Biased Representations for Remote-Sensing Imagery, Tian et al., NeurIPS 2024

We secondly construct less biased centers and calibrate features.

Construct De-Biased Center
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• De-Biased Center

o We calculate de-biased representation center for 
each tail class:

Ƹ𝜇𝑐 = 

𝑘

𝑤𝑘 ⋅ 𝜇𝑘 , 𝑤𝑘 =
𝑛𝑘

𝑛𝑐
,

here weight 𝑤𝑘  proportion to the fraction of class 𝑐 
samples in 𝑘-th cluster.
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• De-Biased Center

o We calculate de-biased representation center for 
each tail class:

Ƹ𝜇𝑐 = 

𝑘

𝑤𝑘 ⋅ 𝜇𝑘 , 𝑤𝑘 =
𝑛𝑘

𝑛𝑐
,

here weight 𝑤𝑘  proportion to the fraction of class 𝑐 
samples in 𝑘-th cluster.

Learning De-Biased Representations for Remote-Sensing Imagery, Tian et al., NeurIPS 2024

We secondly construct less biased centers and calibrate features.

Construct De-Biased Center

𝑤5

𝑤3
𝑤1

𝑤4
𝑤2



CVML Lab @ SMU SCIS, 2024-25

SMU Classification: Restricted

• De-Biased Center

o We calculate de-biased representation center for 
each tail class:

Ƹ𝜇𝑐 = 

𝑘

𝑤𝑘 ⋅ 𝜇𝑘 , 𝑤𝑘 =
𝑛𝑘

𝑛𝑐
,

here weight 𝑤𝑘  proportion to the fraction of class 𝑐 
samples in 𝑘-th cluster.

o This ensures that the de-biased center Ƹ𝜇𝑐  is not 
dominated by head classes

Learning De-Biased Representations for Remote-Sensing Imagery, Tian et al., NeurIPS 2024

We secondly construct less biased centers and calibrate features.

Construct De-Biased Center

𝑤5

𝑤3
𝑤1

𝑤4
𝑤2
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• Tail Class Calibration

o De-Biased Center are closer to validation samples.

Learning De-Biased Representations for Remote-Sensing Imagery, Tian et al., NeurIPS 2024

We utilize LoRA to capture the de-bias mapping.

Feature Calibration
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• Tail Class Calibration

o De-Biased Center are closer to validation samples.

o We calibrate tail class features 𝑧 by moving them close to 
de-biased center Ƹ𝜇 :

ǁ𝑧 = 𝛼𝑧 + 1 − 𝛼 Ƹ𝜇,

where 𝛼 = min(1,
10

𝑖𝑟
) empirically.

• Learning debLoRA

o We learn an LoRA module with training objective

min
𝜙

1

𝐷𝑡


𝑥∈𝐷𝑡

𝑔𝜙 𝑓𝜃 𝑥 − ǁ𝑧

2

Learning De-Biased Representations for Remote-Sensing Imagery, Tian et al., NeurIPS 2024

We utilize LoRA to capture the de-bias mapping.

Feature Calibration
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Experimental Results
Feature Distribution Study • Ablation Studies • Hyperparameter Studies • Validation on Multiple Domains • Validation on Multiple Tasks
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Compare Intra- and Inter-class distance.

Feature Distribution Analysis

• Inter-class distance

o debLoRA achieves higher inter-class distances for both head and tail 
classes, indicating improved head-tail separability.

• Intra-Class Distance for Tail

o debLoRA maintains lower and more consistent intra-class distances for 
tail classes, suggesting more compact and generalizable features for tail.

Learning De-Biased Representations for Remote-Sensing Imagery, Tian et al., NeurIPS 2024
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Evaluate the sensitive of our method to hyperparameters: rank and clustering.

Sensitivity to Clustering Hyper-params

• K-Means Clustering

o Our method is non-sensitive to cluster number K in K-Means Clustering. 
Recommended cluster number is between 32 and 64.

• DBSCAN Clustering

o Our method shows comparable performance as mini batch K-Means, and 
non-sensitive to 𝒆𝒑𝒔 hyper-param.

Table: Compare with DBSCAN (𝒆𝒑𝒔). The DBSCAN results is close 

to K-Means.

Learning De-Biased Representations for Remote-Sensing Imagery, Tian et al., NeurIPS 2024
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Generalization across Different Adaptation Settings

• Natural to Natural

• Natural to Remote Sensing

• Optical Remote Sensing to SAR

Learning De-Biased Representations for Remote-Sensing Imagery, Tian et al., NeurIPS 2024
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• Oriented Object Detection

o Our method consistently outperforms state-of-the-art, especially 
for the tail classes.

Learning De-Biased Representations for Remote-Sensing Imagery, Tian et al., NeurIPS 2024

How we evaluate our method?

Results on Oriented Object Detection
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Please access our paper and code using following links.

Thank You!

• Future Directions

o Explore how to align train/val mismatch in PEFT

o Explore non-linear optimization in PEFT

• Supplementary Links

o Here is our paper’s ArXiv Link

o Here is our paper’s GitHub Repo

Learning De-Biased Representations for Remote-Sensing Imagery, Tian et al., NeurIPS 2024

https://arxiv.org/abs/2410.04546
https://github.com/doem97/deblora
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Appendix
Full Dataset Details • Additional Experimental Results
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Data availability of ORS large-scale pre-training?

Datasets – Available ORS Pre-training Data

Year Dataset Name Classes Image Size (pixel) Image (Instance) Annotation Format Image Source Resolution (m)

2014 NWPU VHR-10 - 956 x 554

~ 1073 x 704

715 / 85 Object classification Google Earth / Vaihingen 0.5-2 / 0.08

2014 NWPU-RESISC45 - 256 x 256 31,500 (700 each class) Scene classification Google Earth 0.2-30

2016 HRSC 2016 - 300 x 300

~ 1500 x 900

1061 Ship detection and 

classification

Google Earth 0.4-2

2016 Airbus Ship Detection - 768 x 768 208,162 Ship detection - -

2018 xView 60 2772 x 2678

~ 5121 x 3023

1413 Object Class WorldView-3 0.3

2019 HRRSD - 493 x 402

~ 2077 x 2606

21,761 / 4961 Object Class Google Earth / Baidu Map 0.15-1.2 / 0.6-1.2

2020 20 800 x 800 23,463 (192,518) OBB Google Earth 0.5-30

2020 FGSD 43 930 x 930 2,612 (5,634) HBB, OBB Google Earth 0.12-1.93

Table: Open-sourced  ORS datasets (1/2). Only datasets released after 2013 are listed.
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SMU Classification: Restricted

Data availability of ORS large-scale pre-training?

Datasets – Available ORS Pre-training Data

Year Dataset Name Classes Image Size (pixel) Image (Instance) Annotation Format Image Source Resolution (m)

2020 FGSC-23 23 40 x 40

~ 800 x 800

4,080 Class Google Earth 0.4-2

2021 FGSCR-42 42 50 x 50

~ 1500 x 1500

9,320 Class Google Earth -

2021 ShipRSImageNet 50 930 x 930

~ 1,400 x 1,400

3,435 (17,573) HBB, OBB Multi-sources -

2022 DOTA v2.0 18 800 x 800

~ 20K x 20K

11,268 (1,793,658) OBB Google Earth / JiLin-1 / 

GaoFen-2

0.1 ~ 4.5

2022 VHRShips 35 280 x 720 5,312 (11,179) HBB Google Earth 0.43

2022 FAIR1M 37 1,000 x 1,000

~ 10,000 x 10,000

42,796 (1.02M) OBB Google Earth / GaoFen 0.3-0.8

2023 UOW-Vessel 10 8192 x 4320

~ 8192 x 6881

3,500 (35,598) Polygon Google Earth -

TOTAL 4.7M

Table: Open-sourced  ORS datasets (2/2). Only datasets released after 2013 are listed.
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Data availability of SAR large-scale pre-training?

Datasets – Available SAR Pre-training Data

Year Dataset Name Samples Sensor Polarization Resolution Classes Annotation Format

2017 SSDD 1,160 Sentinel-1, RadarSat-2, 

TerraSAR-X

HH,VV,VH,HV 1∼15m 1 (Ship) Object detection

2017 OpenSARShip 2.0 34,528 Sentinel-1 - - - Object detection, scene classification

2018 SEN1-2 282,384 Sentinel-1/2 Single-pol - - Image matching, data fusion

2018 SARptical 10,108 TerraSAR-X - <1m - Image matching

2019 AIR-SARShip-1.0/2.0 31/300 Gaofen-3 - 1m/3m 10+ Object detection

2019 SEN12MS 180,662 Sentinel-1/2 Dual-pol 10m - Image classification, semantic segmentation, 

data fusion

2019 PolSF 3,000 Various Full-pol - 5-6 Image classification, semantic segmentation, 

data fusion

2019 SAR-Ship 43,819 Gaofen-3/Sentinel-1 - - - Object detection, scene classification

2019 ShipDataset 39,729 Sentinel-1, Gaofen-3 HH,VV,VH,HV 3∼25m 1 (Ship) Object detection

2020 HRSID 5,604 Sentinel-1B, TerraSAR-X, 

TanDEM-X

HH,HV,VH,VV 0.5∼3m 1 (Ship) Object detection

Table: Open-sourced  SAR datasets (1/2). Only datasets released after 2016 are listed. Majorly involve object detection, scene classification, segmentation tasks.
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Data availability of SAR large-scale pre-training?

Datasets – Available SAR Pre-training Data

Year Dataset Name Samples Sensor Polarization Resolution Classes Annotation Format

2020 So2Sat LCZ42 400,673 Sentinel-1/2 Dual-pol - 17 Image classification, data fusion, uncertainty 

quantification

2020 FUSAR-Ship 5,000+ Gaofen-3 - - - Object detection

2020 OpenSARUrban 33,358 Sentinel-1 Dual-pol 10m 10 Image classification

2020 MSAW 48,000 Capella-X Quad-pol 0.5m - Semantic segmentation

2022 MSAR 30,158* HISEA-1 HH,HV,VH,VV ≤1m 4 Object detection

2022 SADD 883 TerraSAR-X HH 0.5∼3m 1 (Aircraft) Object detection

2023 SAR-AIRcraft 18,888* Gaofen-3 Uni-polar 1m 1 (Aircraft) Object detection

2023 OGSOD 18,331 Gaofen-3 VV/VH 3m 3 Object detection

2023 SIVED 1,044 Airborne SAR synthetic 

slice

VV/HH 0.1,0.3m 1 (Car) Object detection

2023 SARDet-100k 116,598 Multiple Multiple 0.1∼25m 6 Multi-class object detection

TOTAL 1.273M

Table: Open-sourced  SAR datasets (2/2). Only datasets released after 2016 are listed. Only 1.27M available SAR data, while there are more then TB-level unlabeled SAR data available[2]. Majorly 

involve object detection, scene classification, segmentation tasks.

[2] Datasets | Resources | ICEYE

https://www.iceye.com/resources/datasets
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